
Chien — Integrating Planning and Execution 1 October 30, 1998

Integrated Planning and Execution
for Autonomous Spacecraft 1

Steve Chien, Russell Knight, Andre Stechert, Rob Sherwood, and Gregg Rabideau
Jet Propulsion Laboratory

4800 Oak Grove Drive
Pasadena, CA 91109

818-393-5320
{firstname.lastname}@jpl.nasa.gov

1 0-1234-5678-0/99/$5.00 © 1999 IEEE

Abstract— An autonomous spacecraft must balance long-
term and short-term considerations. It must perform
purposeful activities that ensure long-term science and
engineering goals are achieved and ensure that it maintains
positive resource margins. This requires planning in
advance to avoid a series of shortsighted decisions that can
lead to failure. However, it must also respond in a timely
fashion to a somewhat dynamic and unpredictable
environment. In terms of high-level, goal-oriented activity,
spacecraft plans must often be modified in the event of
fortuitous events such as observations completing early and
setbacks such as failure to acquire a guidestar for a science
observation. This paper describes an integrated planning
and execution architecture that supports continuous
modification and updating of a current working plan in light
of changing operating context.

TABLE OF CONTENTS

1. INTRODUCTION

2. INTEGRATING PLANNING AND EXECUTION

3. AN ARCHITECTURE FOR INTEGRATED PLANNING AND

EXECUTION

4. DS4 SPACECRAFT AND LANDED OPERATIONS

DESCRIPTION

5. CONTINUOUS PLANNER DS4 SCENARIO

6. DISCUSSION

1. INTRODUCTION

In recent years Galileo, Clementine, Mars Pathfinder, Lunar
Prospector, and Cassini have all demonstrated a new range
of robotic missions to explore our solar system. However,
complex missions still require large teams of highly
knowledgeable personnel working around the clock to
generate and validate spacecraft command sequences.
Increasing knowledge of our Earth, our planetary system,
and our universe challenges NASA to fly large numbers of
ambitious missions, while fiscal realities require us to do so
with budgets far smaller than in the past. In this climate, the
automation of spacecraft commanding becomes an endeavor
of crucial importance.

This article describes an advance in automated planning and
scheduling technology to spacecraft mission operations.
This technology is applicable to a large spectrum of
missions, from those that have very limited on-board
computational capabilities (such as Lunar Prospector) to
those that fly highly sophisticated software (such as Cassini).
 In all cases the goal is for the project science team to be
able to command the spacecraft directly with no mission
operations specialists involved in routine activities. In the
most sophisticated missions the spacecraft operates
autonomously, interacting with the ground systems and
personnel only when it needs to schedule a downlink activity
to transmit science data back to Earth. Autonomous
spacecraft are possible by endowing the spacecraft with
sophisticated on-board software that provides knowledge
and reasoning procedures to determine appropriate actions
that achieve mission goals, to monitor spacecraft health
during execution, and to recover autonomously from
possible faults [9]. An on-board planner/scheduler is a key
component of such a highly autonomous system. More
generally, routine use of automated planning/scheduling
systems for spacecraft operations, both in ground operations
and on-board in an autonomous spacecraft, will have great
impact on mission operations. Specifically, automated
planning and scheduling provides the following benefits:

• The extremely costly sequencing elements of the
mission operations team would almost be eliminated,
dramatically reducing cost. One estimate [10] indicated
that automation of the commanding could reduce
mission operations costs by as much as 60% (excluding
data analysis). Recent experiences support these
projections. For example, use of the DCAPS automated
planning and scheduling system to command the
DATA-CHASER shuttle payload reduced commanding-
related mission operations effort by 80% [3] as
compared to manual generation of sequences.

• Using planning and scheduling technology, a goal-based
spacecraft could perform opportunistic science. When
an unexpected opportunity occurs (such as a supernova
or solar phenomena), the spacecraft could immediately
respond by performing appropriate measurements rather
than waiting until ground-based detection of the event,
and subsequent uplink of commands to the spacecraft.

• A goal-based autonomous spacecraft could also enable

Chien — Integrating Planning and Execution 2 October 30, 1998

interactive science, when appropriate. A self-
commanding spacecraft could perform high-level
science requests such as "Perform an interferometry
sweep with priority 5." A direct connection between the
scientist and spacecraft with faster feedback allows a
new paradigm for scientific discovery in space.

• Automated planning and scheduling technology offers
the potential to increase science return by producing
operations plans that better optimize use of scarce
science resources. For example, the DCAPS
planner/scheduler increased science return by 40% over
manually generated sequences [3]. This increase was
mostly due to the short turn-around times
(approximately 6 hours) imposed by operations
constraints. The limited time did not allow for lengthy,
manual optimization.

• Finally, planning and scheduling technology simplifies
the self-monitoring, onboard fault-management, and
spacecraft health tasks. Because the spacecraft would
be able to respond in a more goal-oriented fashion
without the time lags introduced by ground
communication, it is possible to cover a greater range of
faults.

The remainder of this paper is organized as follows. First,
we briefly describe the motivations for needing to reduce the
planning response time in spacecraft operations. Next, we
describe our technical approach to interleaving planning and
execution to reduce this response time. We then follow with
an overall architecture for implementing our approach.
Then we describe a mission scenario from the New
Millennium Deep Space Four mission which was used to test
our approach. Finally, we describe related work and
ongoing efforts to further extend and validate this
technology for future space missions.

2. INTEGRATING PLANNING AND EXECUTION

An autonomous spacecraft must respond in a timely fashion
to a (somewhat) dynamic, unpredictable environment. In
terms of high-level, goal-oriented activity, spacecraft plans
must often be modified in the event of fortuitous events such
as observations completing early and setbacks such as
failure to acquire a guidestar for a science observation. We
call this situation dynamic planning, in which a plan must be
continually updated in light of changing operating context.
In such an operations mode, a planner would accept activity
and state updates on a one to ten second time scale. Making
the planner more timely in its responses has a number of
benefits:

• The planner can be more responsive to unexpected (e.g.,
unmodelable) changes in the environment that would
manifest themselves as updates on the execution status
of activities as well as monitored state and resource
values.

• The planner can reduce reliance on predictive models

(e.g., inevitable modeling errors), since it will be
updating its plans continually.

• Fault protection, and execution layers need worry about
controlling the spacecraft over a shorter time horizon
(as the planner will replan within a shorter time span).

• Because of the hierarchical reasoning taking place in the
architecture there is no hard distinction between
planning and execution – rather more deliberative
(planner) functions reside in the longer-term reasoning
horizons and the more reactive execution functions
reside in the short-term reasoning horizons. Thus, there
is no planner to executive translation process.

This introduction of the planner into the short-term planning
horizon can also be motivated by current operations
scenarios taken from the Space Infra-red Telescope Facility
(SIRTF) operations scenarios [9]. In this operations
scenario, the observatory is in a near-earth orbit and has a
set of observation targets and their prioritizations. However,
it is difficult to project exactly how future execution of the
plan will proceed. For example, if spacecraft is able to
acquire the target quickly (as compared to conservative
settling times and time for search for the target), and
observation may complete significantly ahead of schedule.
Alternatively, if the spacecraft repeatedly fails to acquire a
guidestar required by an observation, an observation may be
terminated. This also has the effect of completing the
activity ahead of schedule but with a failed outcome. Within
this operations context, a short-term planner would decide
which observations to sequence next. Such a planner would
need to consider all targets currently on the observation list,
their visibility windows, and their relative positions in the
sky (for reasons of slew minimization and for observation
quality issues). The short-term planner would also need to
track other resource management issues such as data
management relating to engineering and science
observations and coordination with downlink windows.

Planner Plan Executive

Commands
StateGoals

Figure 0 Traditional Plan, Execute, Sense, Replan Cycle

In a traditional plan, sense, act cycle, planning is considered
a batch process and the system operates on a relatively long-
term planning horizon. For example, operations for a
spacecraft would be planned on the ground on a weekly or
daily basis. In this mode of operations, the spacecraft state
at the start of the planning horizon would be determined

Chien — Integrating Planning and Execution 3 October 30, 1998

(typically predicted as the construction of the weekly plan
would need to begin significantly before the week of
execution). The science and engineering operations goals
would then be considered, and a plan for achieving the goals
would be generated. This plan or sequence would then be
uplinked to the spacecraft for execution. The plan would
then be executed onboard the spacecraft with little or no
flexibility. If an unexpected event occurred due to
environmental uncertainty or an unforeseen failure occurred,
the spacecraft would be taken into a safe state by fault
protection software. The spacecraft would wait in this state
until the ground operations team could respond and
determine a new plan. Correspondingly, if an unpredictable
fortuitous event occurs, the plan cannot be modified to take
advantage of the situation.

One model for operations is to move such planning and
replanning functionality onboard, but continue to use it as a
batch process. In this case, in the event of a fault,
environmental event, or fortuitous event, the spacecraft can
respond by entering into a stable state and replanning.
However, constructing a plan from scratch can be a
computationally intensive process and onboard
computational resources are typically quite limited so that it
still may require considerable time to generate a new
operations plan. As a data point, the planner for the Remote
Agent Experiment (RAX) flying on-board the New
Millennium Deep Space One mission [Muscettola et al.
1997] is expected to take approximately 4 hours to produce
a 3 day operations plan. RAX is running on a 25 MHz RAD
6000 flight processor and uses roughly 25% of the CPU
processing power. While this is a significant improvement
over waiting for ground intervention, making the planning
process even more responsive (e.g., on a time scale of
seconds) to changes in the operations context, would
increase the overall time for which the spacecraft has a
consistent plan. As long as a consistent plan exists, the
spacecraft can keep busy working on the requested goals.

To achieve a higher level of responsiveness, we utilize a
continuous planning approach. Rather than considering
planning2 a batch process in which a planner is presented
with goals and an initial state, the planner has a current goal
set, a current state and projections into the future, and a
current plan. At any time an incremental update to the goals
or current state may update the planner process. This update
may be an unexpected event or simply time progressing
forward. The planner is then responsible for maintaining a
consistent, satisficing plan with the most current
information. This current plan and projection is the
planner's estimation as to what it expects to happen in the
world if things go as expected. However, as things rarely go
exactly as expected, the planner stands ready to continually
modify the plan. Current iterative repair planning

2 We use the term planner/planning and executive functions
to describe deliberative processes and run-time reactions. In
the current MDS architecture discussions these would both
be encompassed by the “elaboration” process, which may
occur in advance (and may or may not use a planner) or at
run-time.

techniques enable incremental changes to the goals, initial
state or plan and then iteratively resolve any conflicts in the
plan. After each update, its effects will be propagated
through the current projections, conflicts identified, and the
plan updated (e.g., plan repair algorithms invoked).

3. AN ARCHITECTURE FOR INTEGRATED PLANNING AND

EXECUTION

The overall architecture for the continuous planning
approach is shown in Figure 1.

Initialize P to the null plan
Initialize G to the null set
Initialize S to the current state

Given a current plan P and a current goal set G

1. Update G to reflect new goals or goals that are
no longer needed

2. Update S to the revised current state
3. Compute conflicts on (P,G,S)
4. Apply conflict resolution planning methods to

P (within resource bounds)
5. release relevant near-term activities in P to

RTS for execution
6. Goto 1

In this approach, the real-time software produces updates
that require responses by near and long-term activities for
the spacecraft. The spacecraft state is modeled by a set of
timelines, which represent the current and expected
evolution of the spacecraft over time. This model includes
the current state (S) and the projection of how the state will
evolve in light of actions expected to take place in the future.
 These actions are the current plan (P) that is also reflected
in the timelines as actions at future points in time.

At each iteration through the loop shown above, as the world
changes, the actual state of the spacecraft drifts from the
state expected by the timelines. The real-time software
updates the timeline models (S) with notifications of actual
state values, actual resource values, actual start times and
completion times for activities. Each of these updates, when
synchronized with the current plan may introduce conflicts
(Step 3 above). A conflict is when an action in the plan is
inappropriate – because its required state and/or resource
values violate the system constraints.

Chien — Integrating Planning and Execution 4 October 30, 1998

Simulator

Generic
Simulator
Connector

Real
Time
System

Elaborators

Activity
Database

Timeline
Manager

Simulator commands
and sensor values

Activity commits, rescinds
activity updates,
timeline updates
time updates

Temporal extent to manage
computational slices

Activity permission updates
activities

State and resource updates
activity updates

Activity information
conflict status
Primitive ADB modifications
(add, modify, delete)

Figure 1 Overall Architecture for Continuous Planning

Whenever such a conflict exists the elaborators note the
conflict and perform plan modifications to bring the plan
back into sync with the current state and future projections.
Because this process is continuous, the plan rarely has the
opportunity to get significantly out of sync. As a result the
high-level actions of the system are more responsive to the
actual spacecraft state. The elaborators represent
knowledge sources on how to fix conflicts and may be
general to resource classes and activity types or specific to a
single resource (e.g., fuel).

In conjunction with this incremental, continuous planner
approach, we are also advocating a hierarchical approach to
planning. In this approach, the long-term planning horizon
is planned only at a very abstract level. Shorter and shorter
planning horizons are planned in greater detail, until finally
at the most specific level the planner plans only a short time
in advance (just in time planning). This paradigm is shown
in Figure 2.

Long Term Mission Plan

Medium Term Plan

Short Term Plan

Increased
Detail

Figure 2 Hierarchical Planning Horizons

The idea behind this hierarchical approach is that only very
abstract projections can be made over the long-term and that
detailed projections can only be made in the short-term.
Hence there is little utility in constructing a detailed plan far
into the future – chances are it will end up being re-planned
anyway. At one extreme the short-term plan may not be
“planned” at all and may be a set of reactions to the current

Chien — Integrating Planning and Execution 5 October 30, 1998

state in the context of the near-term plan. This approach is
implemented in the control loop described above by making
high-level goals active regardless of their temporal
placement, but medium and low-level goals are only active
if they occur in the near future. Likewise, conflicts are only
regarded as important if they are high-level conflicts or if
they occur in the near future. As the time of a conflict or
goal approach, it will eventually become active and the
elaboration/planning process will then be applied to resolve
the problem.

4. DS4 SPACECRAFT AND LANDED OPERATIONS

DESCRIPTION

Deep Space 4 / Champollion (DS4) will be the fourth
interplanetary spacecraft in NASA’s New Millennium
Program to identify, test, and fly advanced technologies
onboard interplanetary spacecraft and Earth-orbiting
satellites. In late 2005, following a two-and-a-half-year
journey, DS4 will match orbits, or rendezvous, with Comet
Tempel 1, as the comet is moving away from the Sun. The
spacecraft will spend several months orbiting the comet
nucleus, making highly accurate maps of its surface and
making some preliminary compositional measurements of
the gas in the coma. The data returned from DS4 will be
used to determine the mass, shape, and density of the
comet’s nucleus and to make some early estimates about its
composition.

After studying the nucleus from orbit, the spacecraft will
send a small vehicle - a lander - to the surface. The
touchdown itself will be quite tricky because scientists do
not know whether the surface of the comet nucleus is hard,
rocky, and rough, or soft and fluffy. Therefore, the
challenge engineers face in designing the technology and
instruments for this spacecraft is to be prepared for the
unexpected. One of the ways DS4 engineers are preparing
for all possible scenarios is by developing technologies to
anchor the lander into the comet’s surface no matter what its
composition. Because the gravity of the comet nucleus is so
weak, the lander must be anchored to the surface to permit
drilling and sampling.

Once firmly in place, the lander will use a 1meter long drill
to collect samples and then feed them to a gas
chromatograph/mass spectrometer onboard the lander. This
instrument will analyze the composition of the nucleus
collected from various depths below the surface. The lander
will also carry cameras to photograph the comet surface.
Additional instruments planned onboard the lander to
determine the chemical makeup of the cometary ices and
dust will include an infrared/spectrometer microscope and a
gamma-ray spectrometer. After several days on the surface,
the lander will bring a sample back to the orbiter for return
to Earth.

5. CONTINUOUS PLANNER DS4 SCENARIO

In order to test our integrated planning and execution
approach, we have constructed a number of test cases within

the DS4 landed operations scenario. We have also
constructed a DS4 simulation, which accepts relatively high-
level commands such as: STEP, FFWD, MOVE-DRILL,
START-DRILL, STOP-DRILL, TAKE-PICTURE, TURN-
ON <device>, etc. The simulation covers operations of
hardware devices. In this test scenario the planner has
models of 11 state and resource timelines, including: drill
location, battery power, data buffer, and camera state. The
model also includes 19 activities such as: uplink data, move
drill, compress data, take picture, and perform oven
experiment.

The continuous planner scenario has focused on the comet
lander portion of the DS4 mission. It comprises a period of
approximately 80 hours of lander operations on the comet
surface. It is intended to represent a class of test cases
against which to evaluate the performance of various
command and control strategies for this portion of the
mission.

The nominal mission scenario consists of three major classes
of activities: drilling and material transport, instrument
activity including imaging and in-situ materials experiments,
and data uplink. Of these, drilling is the most complex and
unpredictable.

The mission plan calls for three separate drilling activities.
Each drilling activity drills a separate hole and acquires
samples at three different depths during the process: a
surface sample, a 20 cm. deep sample, and a 1meter deep
sample. Acquiring a sample involves five separate "mining"
operations after the hole has been drilled to the desired
depth. Each mining operation removes 1 cm. of material.
Drilling rate and power are unknown a priori, but there are
reasonable worst-case estimates available. Drilling can fail
altogether for a variety of reasons.

One of the three drilling operations is used to acquire
material for sample-return. The other two are used to supply
material to in-situ science experiments onboard the lander.
These experiments involve depositing the samples in an
oven, and taking data while the sample is heated. Between
baking operations the oven must cool, but there are two
ovens, allowing experiments to be interleaved unless one of
the ovens fails.

One of the continuous planner objectives involves
demonstrating the ability to replan to perform a resource
substitution after a component failure. The three planned
sample activities each use oven 1 for baking the comet
samples. During the simulation run, a failure was injected
on oven 1. This changed the oven 1 state to “failed” for the
remainder of the simulation. Because the second and third
sample activities (as planned) use oven 1, these sample
activities are in conflict because the sample activities require
the oven that they use be functioning. The planning system
recognizes this conflict as a state required by an activity
having the wrong value. The planner then attempts several
fixes, including finding an activity to change the incorrect
state. Unfortunately, there are no such activities to “fix” the
oven. However, the sample activities require an oven

Chien — Integrating Planning and Execution 6 October 30, 1998

resource, and there are two ovens on the DS4 lander. Hence
the planner is able to find a repaired plan in which the
second and third samples use oven 2. The planning system
could also have deleted the activity in conflict. However,
the prioritization with the repair algorithm always considers
moving or adding other activities to solve the conflict before
deleting the conflicting activity.

Figure 3 contains a screen snapshot of the continuous
planner prototype. The display is time oriented, later times
are shown to the right on the horizontal axis. The upper
portion of the screen shows the current activities in the
mission plan, with each line beginning at the activity’s start
time and ending at its end time. The timelines toward the
bottom of the display show the state and resource evolution
as modeled and tracked by the planner.

The data collected during the sample activities is
compressed and then stored in the data buffer of the lander.
This data is uplinked to the orbiting spacecraft at a later
time. Estimates of the amount of data compression are used
to plan when uplink activities are necessary. Because the
compression algorithms are content dependent, these
estimates may significantly deviate from actual achieved
compression.

Another continuous planner objective involved replanning
an activity that oversubscribed a depletable resource. In this
scenario, the actual data generated by the second sample
activity is greater than expected because the compression
achieved is less than originally estimated. The planner
realizes that it will not have sufficient buffer memory to
perform the third sample activity. This results in a conflict
of over-subscription of the data buffer depletable resource.
The planner knows that such a conflict can be repaired by:
removing activities that contribute to resource usage or
adding an activity which renews the resource. In this case
these two options correspond to deleting the third sample
activity or adding an uplink activity (the uplink activity
renews the buffer resource by freeing up buffer storage by
uplinking data to the orbiter. In this case the planner
resolves the conflict by adding an uplink activity after the
second sample activity, freeing memory for the third sample
activity.

An additional example of over-subscription of a depletable
resource was demonstrated. In this case, the battery level
was reduced in the simulator to a very low-level. The
simulator sent an update with the new battery level to the
planner. The planner realized there was not enough power
for the third sample activity which caused a conflict.
Because the lander contains primary batteries that cannot be
charged, there is no activity to renew the battery charge
resource. The only option for the planner is to delete an
activity on the schedule that uses this resource. The third
sample activity was deleted because it is the only activity
scheduled using battery power.

6. DISCUSSION

While the current prototype has been tested on a range of

cases in which state updates require replanning, all of the
cases thus far have been ones in which the updates cause
conflicts in the plan. In the case of the failed oven, buffer
over-use, and battery problem, the state update (when
propagated through the plan) causes a conflict. There are
other cases in which a state update enables a plan
improvement. For example,

• Battery power usage might be lower than expected
enabling insertion of an additional sample activity

• Content-dependent compression might perform
better than expected allowing storage of additional
experiment data

• Drilling might be faster than expected again
allowing for additional science activities

In each of these cases, the planner needs to be aware of the
potential for improvement in the current plan and be
triggered to attempt to take advantage of the fortuitous
situation.

In the current prototype, the planner can only respond to
unexpected changes on activity boundaries. This can be
limited in the context of activities with extremely long
durations. This is because the planner does not have a
model detailed enough to predict the resultant state if
activities are interrupted in mid-execution. It would be
useful if the planner could incorporate a model that could
represent interruptable activities and act appropriately.

A significant proportion of current work involves the
integration of both procedural and declarative planners or
elaborators to resolve conflicts and achieve goals. Instead
of a single planner solving all conflicts, specific types of
conflicts (e.g., spacecraft attitude conflicts) are solved by
software modules called GAMs (Goal Achieving Modules).
 A GAM could be supported by either a specific piece of
code or by a general service (such as a planner) standing in
as a proxy for the GAM. In either case, the contract of the
GAM is to: issue subgoals, make resource reservations, and
issue actions necessary to resolve conflicts in the plan and
achieve the goals requested of it. In cases where it is unable
to achieve the goals, it is to report this information back to
the requestor. Our current prototype allows for both
procedural (implemented in code) and declarative
(implemented in action models to be used by a planner)
GAMs and seamless integration of these approaches is a key
element of our prototype.

While we have tested our prototype on a range of scenarios,
the test set has been quite small. We are currently working
on enlarging the test suite and enhancing the simulation to
address issues of noise in the simulation and commanding as
well as approximate state estimation. These additional
issues will further stress the architecture and are expected to
lead to further insights and work.

Chien — Integrating Planning and Execution 7 October 30, 1998

Figure 3 Screen Snapshot Showing Oven Failed State before Replanning

This work builds on considerable previous work in iterative
repair problem solving. The high-speed local search
techniques used in our continuous planner prototype are an
evolution of those developed for the DCAPS system [Chien
et al. 1998] that has proven robust in actual applications. In
terms of related work, iterative algorithms have been applied
to a wide range of computer science problems such as
traveling salesman [Lin and Kernighan 1973] as well as
Artificial Intelligence Planning [Chien & DeJong 1994,
Hammond, 1989, Simmons 1988, Sussman 1973]. Iterative
repair algorithms have also been used for a number of
scheduling systems. The GERRY/GPSS system [Zweben et
al 1994, Deale et al. 1994] uses iterative repair with a global
evaluation function and simulated annealing to schedule
space shuttle ground processing activities. The Operations
Mission Planner (OMP) [Biefeld and Cooper, 1991] system
used iterative repair in combination with a historical model
of the scheduler actions (called chronologies) to avoid
cycling and getting caught in local minima. Work by
Johnston and Minton [Johnston and Minton 1994] shows
how the min-conflicts heuristic can be used not only for
scheduling but for a wide range of constraint satisfaction
problems. The OPIS system [Smith 1994] can also be
viewed as performing iterative repair. However, OPIS is
more informed in the application of its repair methods in
that it applies a set of analysis measures to classify the
bottleneck before selecting a repair method. With iterative
repair and local search techniques, we are exploring
approaches complementary to backtracking refinement

search approach used in the New Millennium Deep Space
One Remote Agent Experiment Planner [Muscettola et al.
1997].

This paper has described an approach to integrating
planning and execution for spacecraft control and
operations. This approach has the benefit of reducing the
amount of time required for an onboard planning process to
respond to changes in the environment or goals. In our
approach, environmental changes or inaccurate models
cause updates to the current state model and future
projections. Additionally, the planner’s current goal set may
change. In either case, if these changes matter (e.g., the
current plan no longer applies) they will cause conflicts in
the current plan. These conflicts are attacked using fast,
local search and iterative repair methods

ACKNOWLEDGEMENTS

Work described in this paper was supported by the
Autonomy Technology Program, managed by Dr. Richard
Doyle, NASA Code SM and by the Mission Data Systems
Project, managed by Allan Sacks, NASA Code S.
Comments and feedback from Bob Rasmussen, Kim
Gostelow, Dan Dvorak, Erann Gat, Glenn Reeves, and Ed
Gamble were very helpful in formulating and refining the
ideas presented in this paper.

Chien — Integrating Planning and Execution 8 October 30, 1998

REFERENCES

[Biefeld and Cooper 1991] E. Biefeld and L. Cooper,
“Bottleneck Identification Using Process Chronologies,”
Proceedings of the 1991 International Joint Conference on
Artificial Intelligence, Sydney, Australia, 1991.

[Chien and DeJong, 1994] S. Chien and G. DeJong,
"Constructing Simplified Plans via Truth Criteria
Approximation," Proceedings of the Second International
Conference on Artificial Intelligence Planning Systems,
Chicago, IL, June 1994, pp. 19-24.

[Chien et al. 1998] S. Chien, G. Rabideau, J. Willis, and T.
Mann, “Automating Planning and Scheduling of Shuttle
Payload Operations,” Artificial Intelligence Journal Special
Issue on Applications, 1998.

[Deale et al. 1994] M. Deale, M. Yvanovich, D. Schnitzius,
D. Kautz, M. Carpenter, M. Zweben, G. Davis, and B.
Daun, “The Space Shuttle Ground Processing System,” in
Intelligent Scheduling, Morgan Kaufman, San Francisco,
1994.

[Fukunaga et al. 1997] A. Fukunaga, G. Rabideau, S. Chien,
D. Yan, "Towards an Application Framework for
Automated Planning and Scheduling," Proceedings of the
1997 International Symposium on Artificial Intelligence,
Robotics and Automation for Space, Tokyo, Japan, July
1997.

[Hammond, 1989] K. Hammond, “Case-based Planning:
Viewing Planning as a Memory Task,” Academic Press, San
Diego, 1989.

[Johnston and Minton, 1994] M. Johnston and S. Minton,
“Analyzing a Heuristic Strategy for Constraint Satisfaction
and Scheduling,” in Intelligent Scheduling, Morgan
Kaufman, San Francisco, 1994.

[Kautz & Selman 1996] H. Kautz, B. Selman, “Pushing the
Envelope: Planning, Propositional Logic, and Stochastic
Search,” Proceedings AAAI96.

[Lin and Kernighan, 1973] S. Lin and B. Kernighan, “An
Effective Heuristic for the Traveling Salesman Problem,”
Operations Research Vol. 21, 1973.

[Mittman, 1997] D. Mittman (mission operations and
planning lead for Space Infra-red Telescope (SIRTF)
Mission, personal communications, April 1997.

[Muscettola et al, 1997] N. Muscettola, B. Smith, S. Chien ,
C. Fry , K. Rajan, S. Mohan, G. Rabideau , D. Yan, "On-
board Planning for the New Millennium Deep Space One
Spacecraft," Proceedings of the 1997 IEEE Aerospace
Conference, Aspen, CO, February, 1997, v. 1, pp. 303-318.

[Pell et al. 1998] B. Pell, D. Bernard, S. Chien, E. Gat, N.
Muscettola, P. Nayak, M. Wagner, and B. Williams, “ An

Autonomous Spacecraft Agent Prototype,” Autonomous
Robots, March 1998.

[Ridenoure, 1995] R. Ridenoure, New Millennium Mission
Operations Study (and Personal Communication to Guy
Man), June 1995.

[Simmons, 1988] R. Simmons, “Combining Associational
and Causal Reasoning to Solve Interpretation and Planning
Problems,” Technical Report, MIT Artificial Intelligence
Laboratory, 1988.

[Smith 1994] S. Smith, “OPIS: An Architecture and
Methodology for Reactive Scheduling,” in Intelligent
Scheduling, Morgan Kaufman.

[Sussman, 1973] G. Sussman, “A Computational Model of
Skill Acquisition,” Technical Report, MIT Artificial
Intelligence Laboratory, 1973.

[Zweben et al., 1994] M. Zweben, B. Daun, E. Davis, and
M. Deale, “Scheduling and Rescheduling with Iterative
Repair,” in Intelligent Scheduling, Morgan Kaufman, San
Francisco, 1994.

Steve Chien is Technical Group
Supervisor of the Artificial Intelligence
Group of the Jet Propulsion
Laboratory, California Institute of
Technology where he leads efforts in
research and development of
automated planning and scheduling

systems for science data analysis, ground station
automation, and highly autonomous spacecraft. He is also
on the Faculty of the Department of Computer Science at
the University of Southern California. He holds a B.S.,
M.S., and Ph.D. in Computer Science from the University of
Illinois. His research interests are in the areas of: planning
and scheduling, operations research, and machine learning
and he has published numerous articles in these areas. In
1995 he received the Lew Allen Award for Excellence and
in 1997 he received a NASA Exceptional Engineering
Achievement Medal both for his research and engineering
work in automated planning and scheduling systems.

Russell Knight is a member of the Artificial Intelligence
Group at the Jet Propulsion Laboratory in Pasadena,
California.

Andre Stechert is a member of the Artificial Intelligence
Group at the Jet Propulsion Laboratory in Pasadena,
California.

Rob Sherwood is a Member of
Technical Staff at the Jet Propulsion
Laboratory, California Institute of
Technology. He holds a B.S. in
Aerospace Engineering from

Chien — Integrating Planning and Execution 9 October 30, 1998

University of Colorado at Boulder, and a M.S. in
Mechanical Engineering from the University of California
at Los Angeles. He is currently pursuing an M.B.A. at
Loyola-Marymount University. Robert has received 4 NASA
Achievement Awards for his work in Spacecraft Mission
Operations. He is currently working on several projects
involving Planning and Scheduling technologies.

Gregg Rabideau is a member of
the Artificial Intelligence Group at
the Jet Propulsion Laboratory in
Pasadena, California. Gregg
earned his B.S. and M.S. degrees in
Computer Science at the University
of Illinois where he specialized in
Artificial Intelligence. His main
focus is in research and
development of planning and
scheduling systems for automated spacecraft and rover
commanding. Recent projects include the New Millennium
Deep Space One mission and the DATA-CHASER shuttle
payload. Gregg was awarded the NASA Group Achievement
Award for the success of the planner/scheduler used for
DATA-CHASER.

